
CM3050 Mobile Development Final Project
React Native Chat Application

By Garrison Jabs

Table of Contents
Introduction .. 3

Design/ Concept Development ... 3

Statement of Feasibility .. 3

Backend Components ... 3

Frontend Components .. 3

Project Considerations/Plan of Action .. 4

1. MVP (Messenger Service fundamental to the project) .. 5

2. Notifications and Reminders (Second Priority) ... 5

3. Video Chat (Third Priority) .. 5

4. Play games (Fourth Priority) ... 5

Application Flow ... 5

• Unauthorized User .. 7

• Authorized User .. 7

Wireframing/Prototyping ... 7

Development... 8

User Feedback ... 11

Conclusion/Evaluation .. 12

Introduction
With the busy lives most of us currently live, it is very easy to forget to engage with the people

around us. It also creates a situation where even received communications can be forgotten in

the noise, causing us not to respond, until it is too late, if at all. However, with the near perfect

memory of technology, this provides an opportunity for solving this issue. Therefore, the

proposed concept for this project is:

• A Messenger Application that would allow individuals to send instant messages, video

chat, play games, and set reminder notifications to alert them of messages that had

been received, but not yet responded to.

As the market is awash with similar apps such as “WhatsApp” and “Facebook Messenger” to

name two of the biggest, it can be very difficult to stand out as a better application. However, a

shortcoming of most apps is the inability to allow the user to set remind notifications of

messages received. The apps typically only alert the user of a received message.

The main problem this solution is targeting was twofold:

• Engaging with friends, family, and coworkers over distance

• Reminding users of received messages that may need a response

Design/ Concept Development

Statement of Feasibility
The scope of this project is ambitious, as there are significant structural components involved

with creating a messenger application alone, such as:

Backend Components

• A database for managing:

o User information

o Chats

o Messages

• A media storage server for managing:

o Images

o Files

• REST API for managing:

o User authentication

o security

Frontend Components

• A Graphical User Interface to allow users to easily engage with the application

• Client Engine for managing the data requests involved with sending and receiving

messages

• Application services

With the available production period being 10 weeks, not every portion of the application could

be developed from scratch. Therefore, a canned solution of “Firebase” was selected to use as

the Backend component. Firebase was chosen because it is a hosting service produced by

google, that provides a cloud-based API connection to a:

• REST server

• NoSQL Realtime database

• Media storage

Furthermore, this service is provided at several access levels with the most fundamental being,

a free subscription tier for development. With a solution for managing the server-side

components sourced, the project falls within a reasonable scope that should be manageable

within the available time frame.

Project Considerations/Plan of Action
Because two of main concerns when developing an application such as choosing a programing language,

and/or development platform were dictated by the course material. The only other main concerns

were:

• Designing a UI that is efficient and easy to use

• Correctly setting up the connection to the backend API to work with EXPO

• Revaluating if the scope was still too ambitious

Addressing the first concern should be simple. Because chat applications are common, this

creates an opportunity to draw inspirations from common patterns of application flow. In turn,

this makes it very easy for a new user to pick up and use the application as they likely have

previous experience. The second concern should also be quite approachable. Firebase is a well-

established service provider that has good documentation with an active community of users.

This provides many resources for solving issues that may arise. The last concern is the hardest

to know beforehand, whether it will be a problem or not. With that in mind, a development

plan was created that would allow for a more agile approach. This resulted in a breakdown that

established what was required for a Minimal Viable Product (MVP), and which components

could be dropped, due to viable scope shrink. The following lays out the component priority list,

with 1 being the most important and 4 being the first component to be dropped.

1. MVP (Messenger Service fundamental to the project)

• User management

o A way of creating a new user

o A way of validating a user to give access to the application

• Chat Management

o A way of creating a chat

o A way of joining a chat

o Sending messages

o Displaying messages

2. Notifications and Reminders (Second Priority)

• Message tracking

o Data value indicating if a message has been read

o System for updating the values

o Push notifications

o Data value for setting a reminder notification

3. Video Chat (Third Priority)

• Video management

o Connecting the data streams from the two endpoints

o Initiate call/end call

4. Play games (Fourth Priority)

• Game management

o System for managing moves between players

o Scoring

o Game rules

With the three main development concerns addressed, the project began in earnest. An early

design decision for the application was to control the availability of access to authorized users

only. This is because most individuals place a high value on the privacy of their personal

conversations. It was then required to think about user flow design, or rather how a potential

user would interact with the application. This is an important consideration, as a poor flow that

is over complicated can be a major impediment to the adoption of new applications.

Furthermore, with so much availability of alternate solutions, even small pain points can be

enough to cause users to abandon applications entirely.

Application Flow
The design decision to group users into two fields authorized and unauthorized, dictated that

there would need to be user flow considerations for both. This then resulted in the

Login/Signup flow design seen in figure 1 for an unauthorized user.

Figure 1: User flow pattern for Login and Signup

The assumed decision/action path of an unauthorized user indicated that a good user flow

might use two screens to encapsulate the action of logging in a current user and signing up a

new user. For authorized users, the flow considerations were more complicated as a user would

have more available decision/action. The resulting flow based off of experience with other

similar applications and other assumptions can be seen In Figure 2.

Figure 2: Authorized User flow pattern

By exploring the potential application flow, it became apparent that a series of 5 modules

would be ideal to create the MVP. The resulting modules were as follows:

• Unauthorized User

o Login Screen

o Signup Screen

• Authorized User

o Home Screen

o Create Chat Screen

o Chat Screen

Wireframing/Prototyping
At this point I began creating a mid-fidelity wireframe of the application. This was to begin

testing my early assumptions about its ease of use, the flow of the application, and the design

choices made. I also used this opportunity to gather some early feedback about the application.

Figure 3: Mid-fidelity Wireframe of Login and Registration screens

Figure 3 shows the wireframe design of the Signup/Login screens and is a fairly standard model

of the now ubiquitous screens used in most applications. All users asked to mock the

experience of logging in or registering, had no trouble understanding the task and generally

commented that they felt the format was pretty standard.

Figure 4: Mid-fidelity Wireframe of Home, New Chat, and Selected Chat screens

Figure 4 shows the wireframe design of the screens accessible to a logged in user. Again, when

users were asked to mock the experience of using the application, most users intuitively

understood the task as the design was similar to other applications that they had used.

However, it was commented that the color scheme used in the wireframing was very similar to

Facebook. As a result, a different color scheme will be used for the development itself. After

testing the application flow and wire frames with users, it was felt that development could

begin, as many of the assumptions were verified.

Development
Using Expo and React Native, an initial blank project was initiated to begin work on building the

chat application. React navigation dependencies were then added to facilitate transitioning

between different screens. Additionally, 4 JavaScript files were also added that would later

become the other screens in the application. The JS files were then filled with some basic

components such as <View> and <Button>, styling and navigation logic to build a very basic

prototype of the application flow.

Figure 5: Initial Prototype of login and registration screens

None of the backend logic to connect and engage with firebase was created at this time, as the

main thing being tested was the decision/action process through the application. Early tests

proved that the flow functioned as expected, and so it was at this point that Firebase was

added to the build. There are two versions of firebase that work with EXPO. However, EXPO

documentation recommends using the JS SDK version when developing with EXPO GO, over

React Native Firebase. This was the reasoning for adding Firebase JS SDK (9.15.0). As a side

note, this did, however, end up causing a significant problem later on. The platform for hosting

and emulating EXPO projects known as “EXPO Snacks”, does not yet support versions of

Firebase beyond “8.X.X”, while EXPO GO does. Furthermore, the changes to the Firebase

function calls have significantly changed between versions. This was only discovered after a

significant amount of work had been completed, while trying to test the application with EXPO

Snacks. That being said, the problem was not unsurmountable, as the active community had

run into this problem before and offered guidance. The final version of Firebase eventually used

was version “8.10.0”. The needed firebase dependencies were installed, and a firebase account

was created to gain access to the API keys. The connection to Firebase was established in a

config file, which allowed creating/authenticating new users, accessing the real-time database

and file storage as seen in Figure 6.

Figure 6: Initialization of Firebase 8.10.0 and features

As it was now possible to identify authorized and unauthorized users, the logic to separate the

navigation flows of both user types was built. An additional 4 JS files were added to the project,

two files holding the different stack navigation logic. One for holding the logic for selecting the

correct navigation stack based off login status, and another for separating the login screen from

the main App.js file. This was done so that the “App” file was only rendering the needed page.

The logic for selecting the correct navigation stack worked as such; when a user is signed into

the app, Firebase returns a file containing information about that user. By checking if that file

exists and storing that with a useState(), the selector logic returns the correct stack using a

turnery statement, that updates with the change of user login status (as seen in Figure 7).

Figure 7: Navigation Stack Selection Logic

With the navigation fully set up, it was now only a matter of attaching the “sign in” and “create

new user” logic to their respective screens. This was fairly easy, as the Firebase API provided

functions for doing this. Furthermore, I had chosen to authenticate with email and password

over third party authentication, which meant only dealing with the firebase API. It was at this

stage of construction where building the messenger logic began. The main chat page should

show an instance of every chat room available to the user as seen in Figure 8.

Figure 8: Main Chat screen

This meant that when iterating through the available chats, there would be many repeated

function calls. Due to this, I decided to create a custom list component that I could pass the

chat properties. This built a uniform list where each instance was a clickable button, that

navigated to a unique room. After testing the output with an array of static data, it was time to

build the “New Chat” screen, which would allow a user to create new rooms. In creating this

screen, I had made a poor assumption that each room would be private. This assumption was

based off of the fact that Firebase creates unique ids for each document. However, I had

forgotten to create specific unique IDs linked to the specific users to make that true. This

resulted in every room being allowed to receive messages from all users. While this was

unintended behavior, it ended up a case of fortunate misfortune, in that I had created a group

chat feature. To solve the issue of private chats, I created a new id, by joining the two user's

unique ids, as well as adding a reference to the stored list of available users. It was time to

create the functionality that would allow someone to send and receive messages. Using a

“useEffect()” function call and a Firebase listener, I was able to send and receive changes from

Firebase. The “useEffect” allowed the message component to re-render every time a change

was detected. Which allowed messages to be displayed as soon as they were received.

Furthermore, all a user had to do to send a message was to click send.

User Feedback
At this point the app had enough development to gather some user feedback. It was in this

moment when uploading to EXPO Snacks, that I realized I had a problem with my Firebase

dependencies. After solving those issues and gathering feedback, it was time to make some

changes. While the feedback was generally good, it did indicate some significant problems. For

instance, when signing up, a user was allowed to upload an avatar image to their profile.

However, the application didn’t allow a user any means to change that image later. This was

disappointing to the users. Another problem noted was that if the user list and chat room list

grew too long, objects went off the screen. The final issue of note was users found it difficult to

search for another user they wanted to chat with. This was because there was no search tool.

Most other criticisms only involved style changes, such as adding space between components

to reduce crowding on the screen. To address the concerns of objects growing out of view, a

<ScrollView> component was used to encapsulate the objects, thus allowing a user to swipe

through them. Additionally, a profile screen was added to the application to allow users to

modify their avatar. Finally, a search function was added to the “create new chat” screen. This

allowed a user to filter the list of participants by entered value aka “name”. After completing

the changes, the application was run through another round of user testing, that included a

prompt asking about features that were important to the users. The feedback gathered

indicated that while the application was functionally sound, it was missing features that users

wanted such as:

• The ability to send photos

• Message send dates

• The ability to search within a chat room for previous messages

• Seen Status indicator

• Online status indicator

• Dark Mode

• Notifications of new messages

However, with the unexpected issue caused by the Firebase dependency version, and the

length of time it took to solve it. It was necessary to polish the current application into the

deliverable, while making note of the additional features for future development.

Conclusion/Evaluation
I am proud of the application I have developed, even though it ended up not being the

application I proposed. Originally, I had assumed that I understood what was needed for a chat

application. This was an easy assumption for me to make because I used several in my life and

didn’t truly question my understanding. Due to this, I proposed a scope that was very

ambitious, and this resulted in a large overall shrink of scope during development. Another

assumption that affected my ability to develop this project was assuming that EXPO Go and

EXPO Snacks were the same. If I were to start this project over, I would try to better understand

the differences and shortcomings between the development environments I was required to

use. This would be in order to avoid issues of incompatibility that significantly affected my

development time. I would also try to gather more information on features users wanted within

an application, to better understand the product I was trying to develop. When reflecting on

the question “have I built a better application than what is already out there?”. I have to admit

that I have not. This is mainly due to the fact that the application by comparison is not fully

fledged. In order for my application to be competitive, more nuanced features are required to

be implemented. Features such as push notifications. However, given more development time I

feel that the application I started could be, at minimum, a comparative product. With that

being said, the application is a messenger application. Users can sign up, login, send new

messages, read the history of previous messages and create both group and private chat

rooms.

